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ABSTRACT

We describe the ICSI-SRI-UW team’s entry in the Spring
2004 NIST Meeting Recognition Evaluation. The system
was derived from SRI’s 5xRT Conversational Telephone
Speech (CTS) recognizer by adapting CTS acoustic and lan-
guage models to the Meeting domain, adding noise reduc-
tion and delay-sum array processing for far-field recogni-
tion, and postprocessing for cross-talk suppression. A mod-
ified MAP adaptation procedure was developed to make
best use of discriminatively trained (MMIE) prior mod-
els. These meeting-specific changes yielded an overall 9%
and 22% relative improvement as compared to the original
CTS system, and 16% and 29% relative improvement as
compared to our 2002 Meeting Evaluation system, for the
individual-headsetand multiple-distantmicrophones con-
ditions, respectively.

1. INTRODUCTION

Processing natural multi-party interactions presents a num-
ber of new and important challenges to the speech commu-
nity, from dealing with highly interactive and often overlap-
ping speech to providing robustness to distant microphones
recording multiple talkers. Data collected from meeting
rooms provide an ideal testbed for such work, supporting
research in robust speech recognition, speaker segmentation
and tracking, discourse modeling, spoken language under-
standing, and more.

Recent years have seen increased research activity on
meeting data at such sites as CMU/Karlsruhe [1] and ICSI
[2], as well as a number of European initiatives. In March
2004 NIST conducted an evaluation of speech recogni-
tion systems for meetings (RT-04S), following on its ini-
tial Meetings evaluation two years prior (RT-02) [3]. Our

team had participated in RT-02 with an only slightly mod-
ified CTS recognition system, providing little more than a
baseline for future work. For RT-04 our goal was to assem-
ble a system specifically for meeting recognition, although
the limited amounts of meeting-specific training data dic-
tated that such a system would still be substantially based
on our CTS system. This paper describes and evaluates the
design decisions made in the process.

The evaluation task and data are described in Section
2. Section 3 includes the system description, followed by
results and discussion in Section 4. Conclusions and future
work are presented in Section 5.

2. TASK AND DATA

2.1. Test data

The RT-04S evaluation data consisted of two meetings from
each of the recording sites CMU, ICSI, LDC, and NIST,
each about one hour or more in length. Systems were re-
quired to recognize a specific 11-minute segment from each
meeting; however, data from the entire meeting was allowed
for purposes of adaptation, etc.1 Separate evaluations were
conducted in three conditions:

MDM Multiple distant microphones (primary)

IHM Individual headset microphones (required contrast)

SDM Single distant microphone (optional)

The CMU meetings came with only one distant mic; for the
other meetings between 4 and 10 distant mics were avail-
able. The IHM systems were allowed to use all mics (dis-
tant or individual). For MDM and SDM conditions, NIST

1Preliminary experiments had shown only minor benefits from normal-
izing and adapting on entire meetings; we therefore did not take advantage
of this option.



only evaluated regions of speech with a single talker, thus
eliminating overlapping speech. Unlike recent CTS evalua-
tions, the Meetings evaluation included non-native speakers
of English.

The RT-02 evaluation data (another 8 meetings from the
same sources) served as the development test set for RT-04.
However, this set was somewhat mismatched to the RT-04
evaluation data in that CMU and LDC used lapel2 instead
of head-mounted microphones. An additional 5 meetings
(2 ICSI, 2 CMU, 1 LDC) were available from the RT-02
devtest set.

2.2. Training data

Training data was available from CMU (17 meetings, 11
hours of speech after segmentation), ICSI (73 meetings, 74
hours), and NIST (15 meetings, 14 hours). No data from
LDC was available. The CMU data was problematic in that
only lapel and no distant microphone recordings were avail-
able.

We excluded any data which failed to force-align with
the released transcriptions. This eliminated 0.1% of the
data from each of ICSI and NIST, and 11% from CMU.
For acoustic training of the distant mic systems, we also
excluded regions with overlapped speech, based on forced
alignments of the individual mic signals.

3. SYSTEM DESCRIPTION

Our meeting recognition system was based on a fast (5 times
real-time) version of SRI’s CTS recognizer, which we aug-
mented and adapted for the meeting task. Figure 1 shows
the overall system architecture. Key aspects of the system
are described in the following sections.

3.1. Signal processing and segmentation

3.1.1. Noise reduction for distant microphones

The distant mic signals are filtered using a batch version of
the noise reduction algorithm developed for the Aurora 2
front-end proposed by ICSI, OGI, and Qualcomm [4]. The
algorithm performs Wiener filtering with typical engineer-
ing modifications, such as a noise over-estimation factor,
smoothing of the filter response, and a spectral floor. We
modified the algorithm to use a single noise spectral esti-
mate for each meeting waveform. This was calculated over
all the frames judged to be nonspeech by the voice-activity
detection component of the Qualcomm-ICSI-OGI front end.
We applied it independently for each meeting waveform and
used overlap-add resynthesis to create noise-reduced output

2Throughout the text,individual mic subsumes both individual lapel
and individual head-set mic conditions.
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Fig. 1. The overall system architecture.

waveforms, which then served as the basis of all further pro-
cessing.

3.1.2. Segmentation

To identify regions of speech activity and segment them into
suitable chunks for further processing, a recognizer with
two phones (speech and nonspeech) was used to decode the
signal. The phone models impose minimum duration con-
straints and the language model (LM) penalizes switches
between the two models. The resulting segments were post-
processed to satisfy length constraints, and to pad speech
boundaries with a few frames of nonspeech. For distant
mics, the algorithm performs acoustic clustering to keep dif-
ferent speakers in separate segments, and to group same or
similar speakers into clusters that can subsequently be used
for feature normalization and acoustic adaptation.

For the headset mics condition, the segmentation mod-
els were trained on ICSI and NIST headset mics training
data, using forced alignments against the references. For
the distant mic conditions, two sets of models were trained:
ICSI and NIST data were used to train models for those two
sources; the RT-02 devtest data (which included some CMU
and LDC far-field data) were used to train models for seg-
menting the CMU and LDC meetings.

3.1.3. Multiple distant microphone array processing

For MDM processing, segmentation was performed on a
single, central mic. Array processing was then performed
separately on each speech region of the noise-reduced sig-
nals according to the common segmentation. The wave-
form segments from the various distant microphones were
aligned to compensate for time skew and sound travel de-



lays. Finally the aligned signals were summed to yield a
single new segmented waveform.

The rationale behind this processing is that speech will
be summed in-phase and amplified, whereas noise com-
ponents are summed out of phase and will be dampened.
Delays for time alignment were estimated using maximal
cross-correlation, in which the central mic channel was used
as the reference. Since the microphone and speaker loca-
tions were unknown, the same search interval was used for
all microphone pairs at a given site; an educated guess as to
the possible delay ranges was made based on available doc-
umentation of the recording room configurations. Note that
the method assumes that each waveform segment contains
only one speaker and thus that the alignment delays would
not vary within a segment (hence the segmentation step had
to precede the array processing).

3.2. Acoustic modeling and adaptation

3.2.1. Discriminative MAP adaptation

Gender-dependent recognition models were derived from
CTS models trained on 420 hours of telephone speech from
the Switchboard and CallHome English collections. The
MFCC models used 12 cepstral coefficients, energy, 1st,
2nd and 3rd order difference features, as well as 2x5 voic-
ing features over a 5-frame window [5]. The 62-component
raw feature vector was reduced to 39 dimensions using het-
eroscedastic linear discriminant analysis [6]. PLP models
used a similar configuration, except that no voicing fea-
tures were included and a two-stage transform, consisting
of standard LDA followed by a diagonalizing transform [7]
were used to map the feature space from 52 to 39 dimen-
sions. Also, the PLP models were trained with feature-space
speaker adaptive training [8].

The CTS models were adapted to the meeting domain
using ICSI and NIST training data (the CMU meetings were
deemed to be mismatched to the eval data, as discussed in
Section 2.2). Since the prior models had been trained with
the maximum mutual information criterion (MMIE) [9] we
developed a version of the standard maximum a-posteriori
(MAP) adaptation algorithm that preserves the models’ dis-
criminative properties. CTS MMIE models were used to
collect numerator and denominator counts on the meeting
data (downsampled to 8kHz). These counts were combined
with CTS numerator and denominator counts, respectively.
Finally, new Gaussian parameters were estimated from the
combined counts (mixture weights and HMM parameters
were left unchanged in the process).

Experiments showed that an adaptation weight near 20
for the numerator and 5 for the denominator was optimal.
Furthermore, as reported in Section 4, most of the im-
provement can be achieved by only adapting the numera-
tor counts; this could be convenient for some applications

since denominator training requires lattices to be generated
for the adaptation data.

3.2.2. Feature mapping

We also experimented with the probabilistic optimum filter-
ing (POF) [10] approach to cope with the mismatch between
far-field signals and our CTS-based recognition models. In
this approach a probabilistic mapping of noisy (distant mic)
to clean (headset mic) features is trained based on stereo
recordings. However, the method is complicated by time
skew between channels, changing speakers, and location-
specific background noise. We obtained an error reduction
with a feature mapping trained on test data, but were not
able to obtain an improvement when using only training
data, and therefore did not include this method in our even-
tual system.

3.3. Language model and dictionary

Our CTS language model is a mixture LM trained on 4M
words of Switchboard transcripts, 150M words of Broad-
cast News, and 191M words of web data chosen for style
and content [11]. It was adapted for meeting recognition
by adding two meeting-specific mixture components: Meet-
ings transcripts from ICSI, CMU, and NIST (1.7M words),
and newly collected web data (150M words) related to the
topics discussed in the meetings and also aimed at cover-
ing new vocabulary items. Also, 5.3M words from the CTS
Fisher collection were added for coverage of current top-
ics. The mixture was adapted by minimizing perplexity on
a held-out set consisting of approximately equal amounts
of transcripts from the four sources. We also experimented
with source-specific LMs, but found that the available tun-
ing data was insufficient to estimate source-specific mixture
weights robustly.

The vocabulary was extended (relative to the baseline
CTS system) to include all non-singleton words from Fisher
and Meetings transcripts. The vocabulary size was close to
50,000, and yielded a 0.9% out-of-vocabulary rate on the
development test transcripts. The pronunciation dictionary
was inherited from the CTS system and was based on the
CMU dictionary, with added phones for filled pauses and
laughter.

3.4. Decoding

The recognition search was structured as in the SRI “fast”
(5xRT) CTS system. Within-word MFCC models were
adapted with phone-loop MLLR and used to generate bi-
gram lattices. The lattices were then rescored with a 4-gram
LM and consensus-decoded to obtain preliminary hypothe-
ses. These were then used to estimate speaker-adaptive
feature transforms and MLLR model transforms for the



Table 1. Improvement of the new baseline CTS system as compared to
the system used in the RT-02 evaluation, reported on RT-02 eval set.

All ICSI CMU LDC NIST
Individual Mics

RT-02 System 36.0 25.9 47.9 36.8 35.2
RT-04 Baseline 32.8 24.0 44.3 33.2 31.5

Single Distant Mic
RT-02 System 61.6 53.6 64.5 69.7 61.6
RT-04 Baseline 56.6 48.8 61.9 60.5 60.3

cross-word PLP models, which were employed to generate
2000-best lists from trigram-expanded lattices. The N-best
lists were then rescored with a 4-gram LM, pronunciation,
pause, and duration models [12], and combined into final
confusion networks, from which 1-best hypotheses and con-
fidence values were extracted.

3.5. Cross-talk suppression

The decoded word hypotheses from the IHM system were
postprocessed in an attempt to eliminate cross-talk. We as-
sumed that when cross-talk was sufficiently loud, recog-
nized words with low confidence would be produced, and
that most speech was not overlapped. Therefore, we time-
aligned the words on all channels, and deleted those words
which had confidence score below a given threshold, and
overlapped, by at least 50%, with a word on another chan-
nel.

4. RESULTS AND DISCUSSION

4.1. Baseline performance

Since both the old RT-02 system and this year’s baseline
system were developed for the CTS domain, we were inter-
ested to see how much of the improvements made on the
CTS recognition task would carry over to the Meeting task.
Using RT-02 system components comparable to the current
5xRT system, the WER on the 2002 CTS task reduced from
29.4% to 23.6%, a 20% relative reduction. As shown in Ta-
ble 1, the same system achieved relative improvements of
8% and 9% on the RT-02 meeting evaluation data, in the
individual and distant mic conditions, respectively.

In the rest of this section, we report results on the of-
ficial RT-04S development test, whose references differed
somewhat from the RT-02 evaluation set. We present exper-
iments in cumulative fashion, so that each improvement is
the baseline for the following experiment. To be consistent
with RT-02, unless otherwise noted, individual mic recogni-

Table 2. Effect of language model adaptation on RT-04 devtest data.

All ICSI CMU LDC NIST
Individual Mics

Baseline 33.3 23.5 44.6 34.2 32.0
Adapted LM 31.5 20.9 43.6 33.7 28.5

Single Distant Mic
Baseline 56.2 45.9 61.0 63.7 59.9
Adapted LM 53.6 43.0 60.8 62.9 52.3

Table 3. LM perplexities on development test transcripts, by training
source and meeting source. The baseline CTS-LMs include Switchboard,
Broadcast News and conversational web data. Best results for each meeting
type are highlighted.

LM sources All ICSI CMU LDC NIST
CTS-LMs 115.3 104.6 134.2 103.3 130.3
+ Fisher 112.6 102.7 132.6 100.3 125.6

+ Meetings 98.7 75.6 128.5 102.4 100.8
+ Web data 105.3 88.8 122.2 100.8 119.8
+ Mtg + Web 98.4 75.2 125.0 104.3 100.3

tion uses reference segmentations, while distant mic exper-
iments use automatic segmentation, plus noise filtering.

4.2. Language model adaptation

First we examine the effect of LM adaptation (see Sec-
tion 3.3), shown in Table 2. The improvement is roughly
5% overall and appears to be more substantial for ICSI and
NIST, and less so for CMU and LDC data. Besides the lack
of training data for LDC meetings, the observed difference
could be due to the consistency of meeting topics in the ICSI
and NIST data, and their relative variability in the CMU
meetings.

To gain a more detailed understanding of the effect of
the various sources of adaptation data, we also computed
language model perplexities by training data and meeting
source, shown in Table 3. First, we see that adding Fisher
transcripts gives a small but consistent perplexity reduc-
tion (2% relative). Beyond that, the perplexity reductions
achieved by including meeting-specific sources roughly re-
flect the recognition results: they are most substantial for
ICSI (27%) and NIST (20%), small for CMU (8%), and
non-existent for LDC. Note that for CMU the best perplex-
ity is actually achieved by not using any meeting transcripts
and only using topical web data instead. This, too, could re-
flect the fact that the CMU meetings cover a wider range of
topics (that are dissimilar to those of ICSI and NIST meet-
ings).



Table 4. Effect of different acoustic adaptation algorithms on the IHM
condition (RT-04 dev). The source of the adaptation data is matched to the
test data (except for LDC, where ICSI data was used in adaptation).

All ICSI CMU LDC NIST
Unadapted 31.5 20.9 43.6 33.7 28.5
MLE-MAP 30.4 18.4 42.8 33.2 28.0
NUM-MAP 30.0 18.3 42.0 33.0 27.3
MMIE-MAP 29.8 17.9 41.4 32.9 27.6

4.3. Acoustic adaptation

Next we tested the MMIE-MAP acoustic adaptation ap-
proach described in Section 3.2. Table 4 shows small, yet
consistent, improvements over the standard MLE-MAP ap-
proach. MMIE adaptation was effective even if only the
numerator counts were updated (“NUM-MAP”).

For the IHM condition, models were adapted on train-
ing data recorded with head-mounted microphones; for the
MDM and SDM conditions, training data recorded with
distant microphones were used. For the latter conditions,
experiments showed that adapting models to duplicate ver-
sions of the data from different microphones decreased the
WER by 35-63% more than when models were adapted to
data from the central microphone only.

Table 5 shows the improvement of adapted versus un-
adapted models. Acoustic adaptation provided an impres-
sive improvement of 12.5% for the SDM condition (12.6%
for delay-summed MDM) and 5.3% for the individual mic
condition. For the distant mic conditions, combining the
ICSI and NIST data for adaptation proved to be more ef-
fective than source-matched adaptation. Also for the distant
mic condition, the best results for CMU were produced by
using ICSI-only adapted models. Acoustic adaptation was
most effective for ICSI data. One reason is surely that ICSI
was the source with by far the most adaptation data. An-
other likely reason is that ICSI meetings are dominated by
speakers that recur throughout the entire corpus, including
in the test sets.

4.4. Array processing

The acoustic front-end processing of delay-summing the
test signal (as discussed in Section 3.1.3) produced a further
improvement of 6.6%. The delay-summing technique was
also most effective for ICSI data, possibly because we had
more information about ICSI’s meeting room configuration
than for the other sources. Delay-summing the adaptation
data proved to be not as effective as using acoustic models
that were adapted to multiple versions of the signal from
all microphones (by 5% relative). This may be because in
the latter case channel variability is better represented in the

Table 5. Effect of acoustic adaptation on RT-04 devset. “SM Adapted”
meanssource-matched: the source of the adaptation data is matched to the
test.“I+N adapted” means adapted toICSI+NIST training data. +: there
was no training data for LDC, so ICSI data was used.* : recognition on
CMU was best with models adapted to ICSI-only, and SDM and MDM
results are identical since only 1 microphone was available. Since the CMU
and LDC dev data were mismatched to the eval data for IHM (lapel vs.
headset), they were given less consideration in making the overall design
decisions.

All ICSI CMU LDC NIST
Individual Mics

Headset Lapel Lapel Headset

Unadapted 31.5 20.9 43.6 33.7 28.5
SM Adapted 29.8 17.9 41.4 32.9+ 27.6
I+N Adapted 30.3 17.4 43.0 34.0 27.5

Single Distant Mic
Unadapted 53.6 43.0 60.8 62.9 52.3
SM Adapted 48.5 35.5 60.6 56.0 49.0
I+N Adapted 46.9 34.3 59.0* 54.3 46.9

Multiple Distant Mics (Delay-Summed)
Unadapted 50.1 35.2 60.7 61.5 49.9
I+N Adapted 43.8 28.4 59.0* 52.3 44.0

adaptation data.

4.5. Automatic segmentation

Table 6 shows WERs with different segmentations. For
individual mics, the automatic segmentation increases the
WER significantly (20% relative) compared to using refer-
ence segmentations. For distant mics, we were happy to see
that automatic segmentation does not degrade recognition
accuracy compared to the reference segmentation, when
combined with automatic speaker clustering. However, a
diagnostic experiment using both reference segmentation
and speaker labels did improve the results slightly (2.5%
relative). Taken together, these results show that reliable
speaker diarization (tracking of speaker changes, implying
cross-talk identification for individual mics) could improve
recognition performance for all recording conditions.

4.6. Cross-talk suppression

Table 7 shows the results for the cross-talk suppression tech-
nique described in Section 3.5, which led to a 2% overall
WER reduction in the IHM condition. The improvement
was largest for the lapel recordings (CMU and LDC); post-
processing was not done for NIST meetings, which seemed
to have very little cross-talk.



Table 6. WERs on RT-04 devset with either automatic or reference seg-
mentations. Distant mic recognition is further differentiated by the speaker
clustering method used: true speaker labels (TSp) versus automatic speaker
clustering (ASp). Clustering.

All ICSI CMU LDC NIST
Individual Mics

Ref seg 30.3 17.4 43.0 34.0 27.5
Auto seg 36.8 20.8 51.1 45.7 29.8

Multiple Distant Mics (Delay-Summed)
Ref seg (TSp) 42.9 25.8 58.2 53.2 43.6
Ref seg (ASp) 44.1 27.8 56.9 55.9 43.8
Auto seg 43.8 28.4 59.1 52.3 44.0

Table 7. WERs on RT-04 devset with post-processing to eliminate cross-
talk for IHM.

All ICSI CMU LDC NIST
Individual Mics

Baseline 36.8 20.8 51.1 45.7 29.8
Postproc 36.1 20.5 50.2 43.8 30.1

Table 8. Results on the RT-04 evaluation set. “H” marks headset, “L”
lapel mic conditions.

All ICSI CMU LDC NIST
Individual Mics

Dev IHM 36.1 20.5 50.2 L 43.8 L 30.1
RT-04S IHM 34.8 24.2 40.3 H 44.7 H 27.1

Distant Mics
Dev MDM 43.8 28.4 59.1 52.3 44.0
RT-04S MDM 47.0 20.5 56.4 51.2 41.5
RT-04S SDM 51.3 30.4 56.4 52.2 56.2

4.7. Results on evaluation data

Finally, Table 8 shows the results on the RT-04 evaluation
set, which turned out remarkably similar to the devtest over-
all. The CMU individual mic recognition is much improved,
presumably as a result of the switch to headset mics, though
this doesn’t seem to be true for LDC. Note that, for the
MDM condition, even though the per-source WERs are all
lower, the overall WER is not, due to the fact that the more
difficult sources (CMU and LDC) contribute a larger portion
of the test set.

After having developed and tuned the system based on
our 5xRT recognition architecture, we ported our current
full (20xRT) CTS evaluation system to the Meeting domain.

Table 9. Results with full recognition system on RT-04 evaluation set.

System MDM IHM CTS
5xRT 47.0 34.8 24.1
Full 44.9 32.7 22.2

Table 10. Revisiting the choice of acoustic models adapted on
ICSI+NIST data, instead of source-matched adapted data for the RT-04S
IHM data. “SM Adapted” meanssource-matched: the source of the adapta-
tion data is matched to the test.“I+N adapted” means adapted toICSI+NIST
training data.+: there was no training data for LDC, so ICSI data was used.

All ICSI CMU LDC NIST
Individual Mics

SM Adapted 34.9 24.5 40.2 45.1+ 26.6
I+N Adapted 34.8 24.2 40.3 44.7 27.1

The full system adds a second decoding path using within-
word PLP and cross-word MFCC models, lattice regenera-
tion and model readaptation, and a final system combination
of three different acoustic models. Table 9 shows overall re-
sults for IHM, MDM, and, for reference, 2003 CTS recog-
nition. We see almost identical absolute error reductions
on the three test sets, although the relative improvement is
somewhat smaller on Meetings (around 5%, compared to
8% for CTS).

4.8. Post-eval diagnostics for IHM recognition

In this section, we reevaluate some of our design decisions,
with the benefit of hindsight, on the RT-04S evaluation data.
These experiments use the 5xRT system.

Table 10 shows the results of source-matched acous-
tic adaptation versus using acoustic models which were
trained on ICSI+NIST (I+N). Based on our experiments
with the RT-04 dev set on ICSI and NIST data (see Sec-
tion 4.3), we chose I+N models instead of source-matched
models. As previously mentioned, the behavior of the CMU
and LDC dev sets were discounted, as we expected a mis-
match between the development and evaluation set data
(lapel vs. head-mounted microphones). Overall, the deci-
sion to choose I+N models for all test sources proved to be
a good one, although small improvements could have been
gained by using a NIST-only models for NIST and CMU-
only models for CMU.

We also did a post-hoc analysis of automatic segmen-
tation performance on the evaluation data. Table 11 shows
the effects of automatic segmentation and postprocessing on
RT-04S data. The postprocessing for cross-talk suppression
did not generalize well to the evaluation data; in fact, it de-
graded performance on ICSI and CMU meetings. Looking



Table 11. The effects of segmentation and postprocessing (cross-talk suppression) on the RT-04 evaluation set. Results are broken down by both meeting
source and error type (substitution, deletions, insertions).

All ICSI CMU LDC NIST Sub Del Ins
Individual Mics

Ref seg 31.9 23.3 36.9 40.3 24.3 17.4 11.1 3.4
Auto seg 34.5 23.7 39.7 44.7 27.1 16.5 15.5 2.5
Auto seg+postprocessing 34.8 24.2 40.3 44.7 27.1 15.7 16.9 2.2

at the distribution of error types, we see that the automatic
segmentation has a higher error rate mainly due to dele-
tion errors (up 4.4% absolute)—indicating more undetected
speech—rather than due to insertion errors (which would
indicate cross-talk recognition, which are actually lower by
0.9%). This observed behavior is different from that of the
headset-mic portion (ICSI and NIST) of the devtest, where
automatic segmentation lead to only a 2.5% increase in
deletions and a 0.9%increasein insertions. Taken together,
these two observations imply that the evaluation data was
different from the devtest with respect to speech/nonspeech
separation, and points to the importance of more robust seg-
mentation algorithms.

5. CONCLUSIONS AND FUTURE WORK

We have shown how a combination of model adaptation,
pre- and post-processing techniques can be effective in re-
targeting a conversational telephone speech recognizer to
the meeting recognition task. The severe acoustic mis-
match for distant microphones especially was alleviated by
a combination of discriminative model adaptation and sig-
nal enhancement through noise filtering and array process-
ing. Combined with LM adaptation, we achieved relative
improvements of 9% and 22%, respectively, for individual
and distant mic conditions. The system gave excellent re-
sults in the Spring 2004 NIST evaluation.

Still, many challenges remain. Automatic speech seg-
mentation remains a problem, leading to significant degra-
dation compared to a manual segmentation, which we hope
to remedy with the use of novel acoustic features. Meetings
also provide fertile ground for future work in areas such as
acoustic robustness, speaker-dependent modeling, and lan-
guage and dialog modeling.
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